令和5年度 電子回路学 I 前期中間試験 (06/09/23)

1. 下の半導体に関するもので正しいものには○を、間違っているものには×を回答欄に付けよ.

No.	半導体に関する文章					
(1)	温度が上昇すると抵抗が小さくなる.					
(2)	真性半導体の不純物密度はほぼゼロである.					
(3)	Si にPを加えると真性半導体になる.					
(4)	シリコン単結晶の原子間の結合は共有結合である.					
(5)	価電子帯の電子が伝導帯に移る現象を再結合と呼ぶ.					
(6)	抵抗率は不純物の量により変化する.					
(7)	半導体中の電子はどのようなエネルギーの値もとることができる.					
(8)	シリコン中の不純物がヒ素のときは n 形半導体になる.					
(9)	n 形半導体の不純物をアクセプタと呼ぶ.					
(10)	p 形半導体の多数キャリアは電子である.					

2. 下の半導体に関する文章は何の説明か回答欄に答えよ.

No.	半導体に関する文章	回答
(1)	価電子帯の電子が伝導帯に移る現象	
(2)	(1)のうち,熱エネルギーによって起こるもの	
(3)	原子間の結合を行う電子	
(4)	結晶中の電子が取ることのできないエネルギーの範囲	
(5)	伝導帯に存在する電子	
(6)	価電子帯において(5)が抜けた跡の名称	
(7)	半導体において(5)や(6)のように電荷を運ぶものの総称	
(8)	(7)のうち不純物半導体中で数が多いもの	
(9)	(7)のうち不純物半導体中で数が少ないもの	
(10)	シリコン単結晶の結晶構造	
(11)	2種類以上の元素からできている半導体	
(12)	不純物がほとんど無い半導体	_

3. 以下の物質から回答欄に、半導体に○、半導体でないものに×を付けよ.

No.	物質名	回答
(1)	金	
(2)	カーボン	
(3)	ダイヤモンド	
(4)	ゲルマニウム	
(5)	アルミニウム	
(6)	シリコン	
(7)	ガリウムヒ素	
(8)	硫化カドミウム	

				$\bigcirc 119$	<u>U3</u>
C I 3番号	氏名	得点	点	No.	1

4. 下記文章内の [1]~[15] に入る語句を回答欄に記載せよ.

シリコンなど1種類の元素で生成された半導体を[1]半導体と呼ぶ.シリコンは[2]族の元素であり、このシリコン元素に[3]族のヒ素を不純物として微量まぜて結晶を作ると、[4]1個が[5]できなくなり結晶中を動き回る[6]ができる.このときの不純物を[7]、このような半導体を[8]といい、多数キャリアは[9]、少数キャリアは[10]となる.

一方, [11]族のホウ素を不純物として微量まぜて結晶を作ると, [12]が不足して[13]が生成される. このときの不純物を[14], このような半導体を[15]という.

回答:

[1]		[2]		[3]		[4]	[5]	
[6]		[7]		[8]		[9]	[10]	
[11]		[12]		[13]		[14]	[15]	

- 5. 以下の問いに答えよ. 但し、電子の電荷 $q=1.60\times10^{-19}$ [C] 、電子の質量 $m=9.11\times10^{-31}$ [kg] 真空中の誘電率 $\epsilon_0=8.85\times10^{-12}$ [F/m] 、プランク定数 $h=6.60\times10^{-34}$ [m² kg/s] 、ボルツマン 定数 $k=1.38\times10^{-23}$ [J/K] とする.
- (1) ボーアの仮定式から電子が取り得るエネルギー値は $E_n = -\frac{mq^4}{8\varepsilon_o^2h^2} \times \frac{1}{n^2}$ [J]となる. 各パラメータ を代入して、 E_n をエレクトロンボルトに換算して係数を求めよ.

(2) 速度 v = 2,000 k m/s の電子の波長を求めよ.

(3) 2 kV で加速された電子のド・ブロイ波長を求めよ.