令和5年度 電子回路学 後期定期試験問題 (01/29/24)

- 25点 25点
- 氏名 HI3番号

点 No.1 得点

HI1302

 $R_{\,2}$

 $R_{\,3}$

図 4 FET のバイアス回路

 $250\,\Omega$

 $750\,\Omega$

 $V_{
m DD}$

12 V

- 1. 図1の回路について、以下の問に答えよ.
- (1) 回路名を下線部に書き, 図 2 に hie と hfe を用いた等価 回路を描け.
- (2) 入力インピーダンス Ri と電圧利得 Av を導出せよ.

図より

$$V_1 = h_{ie} I_1 + (1 + h_{fe}) I_1 R_L$$
 (1)

従って、入力インピーダンス Riは

$$Ri = \frac{V_1}{I_1}$$

 $= h_{ie} + (1 + h_{fe}) R_{L}$

4 点

(2)

となる. 次に, V_2 は

$$V_2 = (1 + h_{\rm fe}) I_1 R_{\rm L}$$

(3)

で表されるので、電圧利得 A v は

$$A v = \frac{V_2}{V_1}$$

$$= \frac{(1+h_{fe})R_L}{h_{ie} + (1+h_{fe})R_L} = 1$$
 (4)

となる.

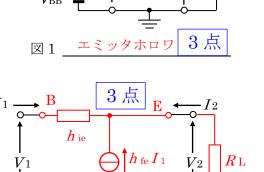


図 2 hie と hfe を用いた等価回路

- 2. 図3の回路名を下線部に書き、以下の問いに答えよ. 但し、電 源は $V_{DD}=5V$, $V_{SS}=0V$ とする.
- (1) V_{GS1} と V_{GS2} を式で表し、 $V_{1}=5$ V のときと 0V のときの値を それぞれ求めよ.

$V_{\rm GS1}$:

図より、 $V_{GS1} = V_1 - V_{DD} = V_1 - 5$ (V)

 $V_1 = 5V$ のとき: $V_{GS1} = 5-5=0$ (V)

4 点

 $V_1 = 0V \cap 2 \approx V_{GS1} = 0-5=-5 \text{ (V)}$

 $V_{\rm GS1}$ \square Q₁ 3 点 図3 CMOS インバータ

$V_{\rm GS2}$:

同様に、 $V_{GS2} = V_1 - V_{SS} = V_1$ (V)

 $V_1=5V \circ 2 : V_{GS2}=5 (V)$

 $V_1=0V \cap \xi$: $V_{GS2}=0 (V)$

4点

(2) 表 1 の空欄を埋めよ. 但し, Q1, Q2 との欄は オンなら○でオフなら×で記入せよ.

4 点

表 1 図 3 の動作表								
V_1	$V_{ m GS1}$	$V_{ m GS2}$	\mathbf{Q}_1	\mathbf{Q}_2	V_2			
5V	0V	5V	×	0	0V			
0V	-5V	0V	0	×	5V			

 $4k\Omega$

- 3. 図4の回路について、以下の問いに答えよ.
- (1) 図の FET は何チャネルの何 FET か.

n チャネル接合形 FET

3 点

(2) 図の V_{GS} を V_{DD}, I_D, および抵抗の記号を用いて表せ(各 素子値を代入した式も求める).

図より、ゲートには電流が流れないので

 $V_{GS} = -R_3 I_D$

Inを mA で表し、各素子値を代入すると

 $V_{GS} = -0.25I_{D}$

4点

となる.

(参考) Љを求めると

 $I_D = -4V_{GS}$ [mA]

(3) 図 5 は Vos-In 特性である. (2) で得られた式のグ ラフを図中に記入し,動作点Qを書き込め.また, 無信号時の V_{GS} と I_D を求めよ.

> $V_{\rm GS} =$ -1 V

4 mA $I_{\rm D} =$

3 点

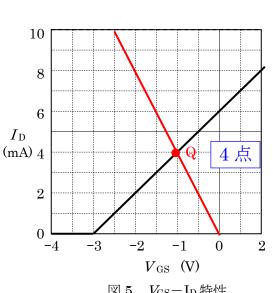


図 5 V_{GS}-I_D特性

令和5年度 電子回路学 後期定期試験問題 (01/29/24)

25点 25点

HI3番号 氏名

No. 2

HI1302

1 3 伊万______ 八名____

- 4. 図6について、以下の問いに答えよ.
- (1) 下線部に FET の名称を書き、図中の括弧内に端子等の名称を記入せよ.

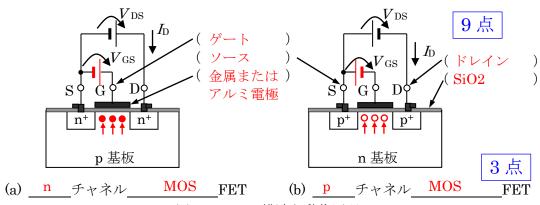


図 6 FET の構造と動作原理

(2) 同図(a) 中に h を流すように V_{GS} を記入して,チャネル内に電子を \bullet で正孔を \circ で,その動きを矢印で記入し,動作を説明して h が流れる理由を述べよ. 3 点

ゲートGの下面にはn チャネルが作られていないので、 $V_{CS}>2\sim3V$ 程度の正電圧にするとゲートの下面に電子が集まり、この電子がチャネルを形成して I_D が流れる。

(3) 同図(b) 中に f_0 を流すように f_0 を記入して, チャネル内に電子を f_0 で正孔を f_0 で正孔をを決印で記入し, 動作を説明して f_0 が流れる理由を述べよ.

ゲートGの下面にはpチャネルが作られていないので、 $V_{GS}<-2\sim-3V$ 程度の負電圧にするとゲートの下面に正孔が集まり、この正孔がチャネルを形成してが Δ が流れる.

- (4) 図 7 に図 6(a)と(b)の V_{GS} - I_D 特性を描け、但し、図 6(a)の特性は実線で、図 6(b)の特性は破線で描け、
- (5) 図 6(a)と(b)の回路記号をそれぞれ図 8 の(a)と(b)に描け.

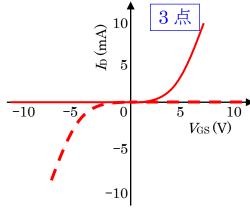
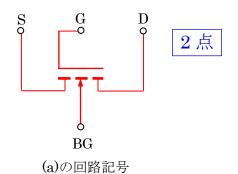



図7 VGS-In特性

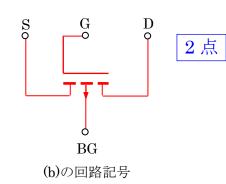


図8 図6の回路記号

(1) 下線部に回路名を記入せよ.(2) しきい値電圧 V_Tを求めよ.

 $V_T = \frac{V_{DD} + V_{SS}}{2} = 2.5 \text{ V}$

5. 図9について、以下の問いに答えよ.

2点

(3) 下の素子名を下線部に書け.

3点

Q1: <u>n</u> チャネル <u>MOSFET</u>

Q3: <u>p</u>チャネル MOSFET

(4) $Q_5 \sim Q_8$ の動作を説明せよ.

4 点

 Q_3 X Q_6 Q_8 Q_7 Q_7 Q_7 Q_7 Q_7 Q_8 Q_8

+ $V_{DD}=5V$

 Q_4

5 点

 Q_5 と Q_6 , Q_7 と Q_8 とでインバータを構成し, Y=X と信号は同じになるが, 出力 Yは X の出力

より多くの電流を流せるバッファーの働きをする.

(5) 入力 A =0V, B =5V とした場合で, $Q_1 \sim Q_4$ のスイッチ状態を図 10 に描いて途中の電圧 Xを求めよ.

電圧
$$X = 0$$
 V

(6) 表 1 の空欄を埋めよ. 但し、簡単のため、0V は"0"で、5V は"1"で表し、スイッチ状態はオンで \bigcirc 、オフは \times で表す.

表9 図0の動作表

衣 2 因 9 0 期 日 衣						0 11	15				
入	力		スイッ	チ状態	ł	途中	``\	スイッ	チ状態	30%	出力
A	B	\mathbf{Q}_1	\mathbf{Q}_2	\mathbf{Q}_3	\mathbf{Q}_4	X	\mathbf{Q}_5	\mathbf{Q}_{6}	\mathbf{Q}_7	\mathbf{Q}_8	Y
0	0	×	×	0	0	1	0	×	X	0	1
0	1	×	0	×	0	0	×	0	0	×	0
1	0	0	×	0	×	0	×	0	0	×	0
1	1	0	0	×	×	0	×	0	0	×	0

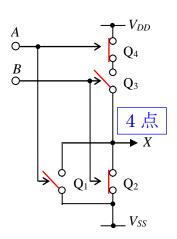


図10スイッチで表した回路

(7) 入力A, Bと出力Yの関係を論理回路で描け.

令和5年度 電子回路学 後期定期試験は以下のような問題である.

(試験範囲 7章(pp. 112-116), 8章(pp. 131-148), CMOS(教科書にない). ★小テスト, 配布資料, およびノート) 出題者:大田

- 1. エミッタホロワ (負帰還増幅回路) の回路図を与えるので次の問に答える(p.112). ★★
 - (1) 回路名を書く(エミッタホロワ,コレクタ接地増幅回路)(エミッタホロワ回路は不可).
 - (2) トランジスタを h_{ie} と h_{fe} の等価回路で描く.
 - (3) 各部の電圧 (電流) を求め、電圧 (電流) 増幅度と入 (出) カインピーダンス Z_i (Z_o) を求める.
- 2. 電界効果トランジスタ (FET) の原理図を与えるので次の問に答える $(p.131\sim)$. $\star\star$

 - (2) ゲート電圧 VGs で電子●や正孔oがどう動くかを描いて、電流が流れるか・流れないか を説明する.
 - (3) FET の動作から伝達特性(V_{GS} $-I_D$ 特性)を概略描ける.
 - (4) FET の原理図を回路記号で描ける $(n \cdot p f + r \cdot h)$, 接合形・MOS 形かの判断).
- 3. FET のバイアス回路, 伝達特性 (V_{GS} - I_D 特性), 出力特性 (V_{DS} - I_D 特性) を与えるので次の問に答える(p.138)【トランジスタの場合と同様】. $\star\star$
 - (1) FET 名を書く (n チャネル, p チャネル) (接合形, MOS 形) FET.
 - (2) 負荷線を求める回路を描き、負荷線 (V_{GS} や I_D) の式を求める.
 - (3) 伝達特性 (VGS-AD特性) や出力特性 (VDS-AD特性) 上に負荷線と動作点を描く.
 - (4) 動作点から, 無信号時の V_{GS}, V_{DS}, Lo を求める,
 - (5) 動作点の移動から電圧増幅度を求める.
 - (6) **FET** の等価回路を g_m と r_d で表し、各部の電圧(電流)を求め、増幅度や入(出)力インピーダンスを求める.
- 4. C-MOS 回路 (インバータ, NAND 回路, NOR 回路) を与えるので次の問に答える(教科書にない). ★★
 - (1) 電源電源 (V_{DD} , V_{SS}) から、しきい値電圧 V_T を求め、各 MOSFET の V_{GS} の式を求め、各 MOSFET スイッチのオン・オフを判断して、入力電圧と出力電圧の関係を求める.
 - (2) 入力波形を与えるので、出力電圧波形を描く、
 - (3) 入出力電圧の関係から、論理回路図(NOT, NAND, NOR)で描く.
- ★★各自、配布資料、★小テストをもう一度、何も見ずに解いてみること、★★

以上を何も見ずに全て解けるようになれば、90点以上は取れる問題を出す. 普段できないことは、試験でもできません! 必ず、各自解いてみること!