令和5年度 電子回路学 I 前期定期試験 (07/28/23)

1. 下の説明文が正しい場合は○. 間違っている場合は×を回答欄に記せ、

т.	「少説引入が正し、物目はし、同選うで、る物目はへと固合欄に配せ、					
No.	説明文	回答				
(1)	電界が加わることにより流れる電流を拡散電流と呼ぶ.					
(2)	導電率は抵抗率の逆数である.					
(3)	pn 接合に順バイアス電圧を加えると電子が p 形から n 形半導体に移動する.					
(4)	空乏層には自由なキャリアが大量に存在する.					
(5)	半導体に電界を加えると、電子と正孔はそれぞれ同じ方向に加速される.					
(6)	pn 接合に逆バイアス電圧を加えると空乏層幅が減少する.					
(7)	半導体中の全電流密度は、電子の電流密度と正孔の電流密度の差である.					
(8)	pn 接合ダイオードの電流はアノードからカソードへ向かって流れる.					
(9)	ダイオードは整流作用を持つ.					
(10)	半導体中の電流密度は導電率と電界に比例する.					

2. 下の説明に当てはまる語句を回答欄に答えよ.

No.	説明文	回答
(1)	電界が加わることにより発生する電流	
(2)	pn 接合で生じる n 形半導体と p 形半導体のエネルギーの差	
(3)	半導体において電子または正孔の存在確率が 1/2 となる準位	
(4)	拡散係数と移動度の関係を表すもの	
(5)	エネルギーの大きい電子が原子に衝突することで価電子が伝 導帯に励起される現象	
(6)	ダイオードで電流が流れないように外部電圧を加えること	
(7)	ダイオードにみられる,ある方向には電流が流れやすいが,逆 方向には電流が流れにくいという特性	
(8)	キャリア密度の差が原因で発生する電流	
(9)	ダイオードで電流が流れるように外部から電圧を加えること	
(10)	pn 接合面付近に生じるキャリアの少なくなった領域	

- 3. 図1はpn接合を示した模式図で,図中の○は正孔,
 - ●は電子を表している. 下の説明文の [1]~[10] に | 入る語句を回答欄に記載せよ.

図 1(a)のような pn 接合を作ると同図(b)のように, 電子 が[1]により[2]から[3]へ、正孔が[3]から[2]へ移動する. 電子と正孔は接合面付近で[4]する. その結果, 同図(c) のように A の部分にキャリアが無い[5]ができる. A の部 分のうち[2]中にはイオン化した[6]が,[3]中にはイオン化 した[7]が存在する. このことにより, [8]方向の[9]が発生 する. これにより[10]の移動が停止する.

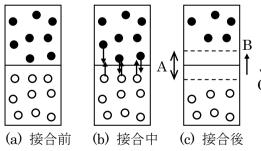


図1 pn接合の図

				CI130	03
CI3番号	氏名	得点	点	No.	1

回答:								
[1]		[2]		[3]		[4]	[5]	
[6]		[7]		[8]		[9]	[10]	

- 4. 27℃のシリコン真性半導体に電界 200 [V/m] を加えた. 以下の問いに答えよ. 但し, 真性半導体キャリア密度を 1.50×10¹⁶ [cm⁻³] とし, 電子と正孔の移動度をそれぞれ 1,600 $[cm^2/V \cdot s], 400 [cm^2/V \cdot s]$ $\geq t = 3.$
- (1) このときの半導体中に流れる電流密度を求めよ.

(2) この半導体の抵抗率を求めよ.

(3) この半導体の電子と正孔の拡散係数をそれぞれ求めよ.

令和5年度 電子回路学 I 前期定期試験 (07/28/23)

C I 3番号 氏名

No. 2

- 5. 300 K の温度状態において,フェルミ準位より 0.1 eV 高いエネルギー状態を電子が占める確率 を求めよ.
- 7. 300K における真性 Si のキャリア濃度を求めよ. 但し、Si のバンドギャップは 1 eV とする. 但し、電子の有効質量は $0.3\,m_0$ 、正孔の有効質量は $0.5\,m_0$ とする.

6. 17 °C おける Si の価電子帯と伝導帯の有効状態密度をそれぞれ求めよ. 但し, 正孔の有効質量は $0.5m_0$, 電子の有効質量は $0.3m_0$ とする (m_0 は電子の静止質量).

【参考】必要に応じて下の定数や式を使用せよ.

電子の電荷 = 1.60×10^{-19} [C] ,電子の静止質量 = 9.11×10^{-31} [kg],真空中の誘電率= 8.85×10^{-12} [F/m] ,プランク定数 = 6.60×10^{-34} [m² kg / s] ,ボルツマン定数= 1.38×10^{-23} [J/K] ,

$$f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{k_B T}\right)}, \quad g_c(E) = 4\pi \left(\frac{2m_n^*}{h^2}\right)^{3/2} \left(E - E_C\right)^{1/2}, \quad g_v(E) = 4\pi \left(\frac{2m_p^*}{h^2}\right)^{3/2} \left(E_v - E\right)^{1/2},$$

$$N_C = 2\left(\frac{2\pi m_n * k_B T}{h^2}\right)^{3/2}, \quad N_V = 2\left(\frac{2\pi m_p * k_B T}{h^2}\right)^{3/2}, \quad E_F = \frac{E_C + E_V}{2} + \frac{3k_B T}{4}\ln\left(\frac{m_p *}{m_n *}\right),$$

$$n_i(T) = 2\left(\frac{2\pi k_B T}{h^2}\right)^{3/2} \left(m_n^* m_p^*\right)^{3/4} \exp\left(-\frac{E_g}{2k_B T}\right), \quad n_o = N_C \exp\left(-\frac{E_C - E_F}{k_B T}\right), \quad p_o = \frac{n_i^2}{n_0^2} \cong \frac{n_i^2}{N_d},$$

$$E_F = E_C - k_B T \ln \left(\frac{N_C}{N_d} \right), \quad E_F = E_v + k_B T \ln \left(\frac{N_V}{N_a} \right)$$

$$J_n = qD_n \frac{dn}{dx}, \quad D_p = \frac{k_B T}{q} \mu_p, \quad J = J_n + J_p = q(n\mu_n + p\mu_p)E = \sigma E \quad , \quad \sigma = q(n\mu_n + p\mu_p)$$