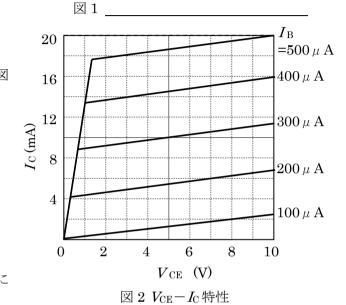

令和5年度 電子回路学 前期定期試験問題 (07/31/23)


- 1. 図1について、以下の問いに答えよ.
- (1) 下線部に回路名を記入し、直流電源も記入せよ.
- (2) トランジスタの C-E 端子から右を見た回路を描け、

 $C \circ$

ΕO

(3) 負荷線の式を導出せよ. 即ち、(2)で描いた図で $I_{\rm C}$ を $V_{\rm CE}$ 、 $R_{\rm C}$ 、 $V_{\rm CC}$ で表す.

(4) 図 2 の出力特性(V_{CE} $-I_{\text{C}}$ 特性)のグラフに 負荷線と動作点 P を描け. 但し、 V_{CC} = 10V, R_{C} = $500\,\Omega$ で、入力信号がない場合(v_s = 0), I_{B} = $300\,\mu$ A であった.

(5) 信号がない場合のコレクタ電圧 V_{CE} とコレクタ電流 I_{C} を求めよ. 単位も付ける.

$V_{\rm CE} =$		$I_{\rm C}$	=
			<u> </u>

(6) 入力信号 V_S の振幅を 0.08V にしたら, I_B は $\pm 100\,\mu$ A 変化(ΔI_B)した.このときの動作点の移動点 Q と R を図 2 中に描き, V_{CE} と I_C の変化(ΔV_{CE} と ΔI_C)を求めよ(\pm 〇〇で答える).

VCE の変化=_____ Ic の変化=____

(7)(6)より, 電圧増幅度 Avと電流増幅度 Aiを求めよ.

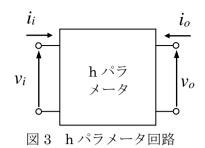
電圧増幅度 A_v = -----==

電流増幅度 Ai = ----==

(8) 電力増幅度 A_0 と電力利得 G_0 の定義式と値をそれぞれ求めよ.

電力増幅度 Ap =

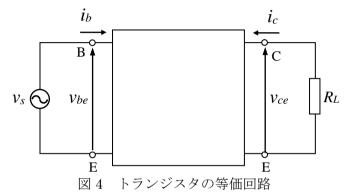
電力利得 $G_p =$


HI3番号 氏名

得点 点 No. 1

HI1302

2. 図3のhパラメータについて,以下の問いに答えよ.


(1) h パラメータを hie, hre, hfe, hoe で表し、その定義式を書け.

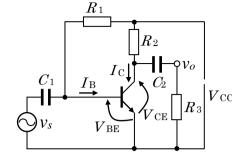
(2) エミッタ接地トランジスタの場合, $h_{re} = 0$, $h_{oe} = 0$ で近似できる.

この場合の等価回路を図 4 の四角内に描け、なお、入出力の電圧と電流は図 4 の記号を用いて表す.

(3) 図 4 から,入力電流 i_b を入力信号源 v_s と h パラメータで表せ.

(4) 図 4 から、出力電流 i_c を入力電流 i_b と h パラメータで表せ.

(5) 図 4 から、出力電圧 v_{ce} を入力信号源 v_s 、負荷抵抗 R_L 、および h パラメータで表せ.


(6) 以上より、入力インピーダンス Z_i 、電圧増幅度 A_v 、電流増幅度 A_i および電力増幅度 A_p を求めよ.

令和5年度 電子回路学 前期定期試験問題 (07/31/23)

HI1302 No. 2

- 3. 図5について、以下の問いに答えよ.
- (1) 下線部に回路名(○○バイアス回路)を記入し、直流 電源も記入せよ.
- (2) C-E 端子から右を見た直流回路を描け.

 \mathbf{C}

 $I_{\rm B}=$

 \mathbf{E}

(3)(2)より直流負荷線の式を導出せよ.

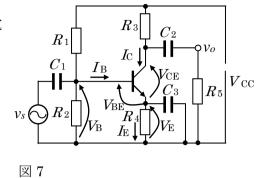
100 μ A 20 60 μ 20μ 6 8 10 $V_{\rm CE}$ (V)

図 6 $V_{\text{CE}} - I_{\text{C}}$ 特性

(4) C-E 端子から右を見た交流回路を描け.

 \mathbf{C}

 \mathbf{E}


(5)(4)より交流負荷線の式を導出せよ.

- (6) 図 6 の出力特性のグラフに直流負荷線を実線で、交流負荷線を破線で描き、 $v_s=0$ での動作点 P, $v_s = \pm 10$ mV 変化で移動した動作点 $Q \ge R$ を描け、但し、 $V_{CC} = 10$ V、 $R_1 = 3$ k Ω 、 $R_2 = 0.5$ $k\Omega$, $R_3=10/3$ $k\Omega$ ($\stackrel{.}{=}3.33$ $k\Omega$) で、 $v_s=0$ で $I_8=50$ μ A で、入力信号 v_s の振幅を 10mV にし たら、 I_B は $\pm 20 \mu A$ 変化したとする。
- (7)(6)から下の値を求めよ.

電圧増幅度 Av = ----==

- 4. 図7について、以下の問いに答えよ、
- (1) 下線部に回路名(○○バイアス回路)を記入し、直流電 源も記入せよ.
- (2) C-E 端子から右を見た直流回路を描け、

 $C \circ$

ΕO

(3) C-E 端子から右を見た交流回路を描け、

 $C \circ$

Εo

(4)(2)と(3)から直流負荷線および交流負荷線の式を導出せよ.

【直流負荷線】

【交流負荷線】

(5) 温度変化で I c が減少したとして、図 8 の下線部に増 加,減少,一定,および式を記入せよ.また,下の説 明文の下線部に入る語句を埋めよ.

【説明文】

右図のように一巡すると、 $I_{\rm C}$ の を 方向に働くので、この回路は であることが分かる. ここで、コンデンサ C_1 は に が流入するのを防ぎ、 C_2 は に のみを出力するようにする. また, C_3 は 成分 をバイパスして_____の低下を防いでいる. また、 C_1 、 C_2 は______コンデンサ、 C_3 は コンデンサと呼ばれる.

【増減】	
∏ Ic: <	【式】
I_E :	I_E =
$V_E:$	$V_E = \underline{\hspace{1cm}}$
V_B :	$V_B =$
V_{BE} :	
<i>I_B</i> :	
$\bigvee I_C$:	I_C =

図8 安定性の説明図