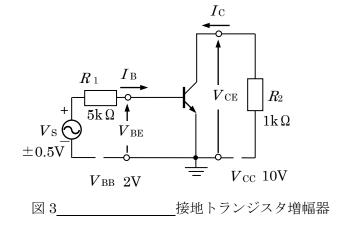

令和6年度 電子回路学 前期定期試験問題 (07/26/24)

- 1. 図1のhパラメータについて,以下の問いに答えよ.
- (1) h パラメータを hie, hre, hfe, hoe で表し, その定義式を書け.

- (2) エミッタ接地トランジスタの場合, $h_{re} = 0$, $h_{oe} = 0$ で近似できる. この場合の等価回路を図 2 の四角内に描け. なお, 入出力の電圧と電流は図 2 の記号を用いて表す.
- (3) 図 2 から,入力電流 i_b を入力信号源 v_s と h パラメータで表せ.


- (4) 図 2 から、出力電流 i_c を入力電流 i_b と h パラメータで表せ.
- (5) 図 2 から、出力電圧 ν_{ce} を入力信号源 ν_{s} 、負荷抵抗 R_{L} 、および h パラメータで表せ.

(6) 以上より,入力インピーダンス Z_{i} ,電圧増幅度 A_{ν} ,電流増幅度 A_{i} および電力増幅度 A_{p} を求めよ.

HI3番号 氏名

得点 点 No. 1

- 2. 図3の回路名を下線部に記入し,以下の間に答えよ.
- (1) 図3中に電池の記号 V_{BB} と V_{CC} を描け.
- (2) V_{CE} の端子から右を見た回路を描け.

(3) 記号で表した式で I_c を求めよ、また、数値を代入した式を求めよ(数値を代入した式には単位を付けること!!).

[記号で表した式]

[数値を代入した式]

- (4) (3)で求めた式のグラフを図 4 の出力特性の
- (5) V s=0V のとき、ベース電流 I B は 300 μ A であった.このときの動作点 Q を図 4 中に記し、コレクタ電圧 V_{CE} とコレクタ電流 I_{C} を求めよ.

 $V_{
m CE} = I_{
m C} =$

中に描け.

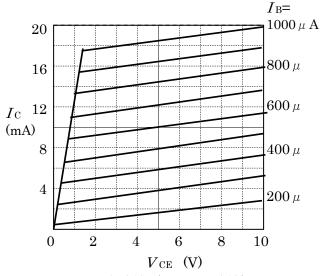
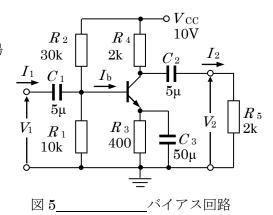
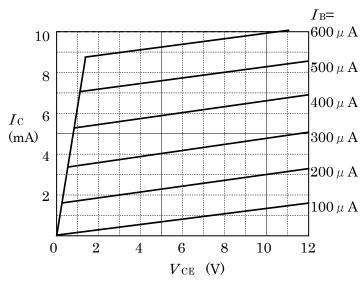



図 4 出力特性 ($V_{CE}-I_{C}$ 特性)


令和6年度 電子回路学 前期定期試験問題 (07/26/24)

HI3番号 氏名 No. 2

- 3. 図5について、以下の問いに答えよ、
- (1)回路名(○○バイアス回路)を下線部に書け.
- (2) トランジスタ T_{r1} の C-E 端子から右を見た場 合の直流等価回路を描け.

(3) 直流負荷線の式を導出し、図 6 の 出力特性 ($V_{\text{CE}}-I_{\text{C}}$ 特性) のグラフ に負荷線を実線で描け.

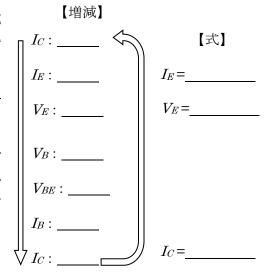
(4) 入力信号が零の場合、I_B =200 μ A であった. 図6に動作点Qを描け.

- 図 6 V_{CE}-I_C 特性
- (5) (4)より、無信号時における T_{r1} の下記の値を求めよ、単位も付ける.

コレクタ電流 $I_{\mathrm{CE}}=$ コレクタ・エミッタ間電圧 $V_{\mathrm{CE}}=$ エミッタ電位 $V_{
m E}$ = $_$ コレクタ電位 $V_{
m C}$ = $_$

- (6) トランジスタ Tr1 の C-E 端子から右を見 た場合の交流等価回路を描け.
- (7)(6)より、交流負荷線の式を導出し、図6の 中に破線で表せ.

(8) 入力電圧 V_1 の振幅を 0.1V にしたら、 I_B は±100 μ A 変化した. このときの V_{CE} と I_C の変化を求 めよ (±○○で答える).


 V_{CE} の変化= $I_{
m C}$ の変化=

(9) (8)より、 T_{r1} による電圧増幅度 A_v と電流増幅度 A_i はそれぞれ何倍になるか.

(10)温度上昇で $I_{\rm C}$ が増加したとして、図7の下線部に減 少,一定,増加,および式を記入せよ.また,下の説 明文の下線部に入る語句を埋めよ.

【説明文】

右図のように一巡すると、 $I_{\rm C}$ のを 方向に働くので、この回路は であることが分かる. ここで、図5のコンデンサ C_1 は に が流入するのを防ぎ、 C_2 は に のみを出力するようにする. また, C_3 は 成分 をバイパスして の低下を防いでいる. また、 C_1 、 C_2 は______コンデンサ、 C_3 は $_{}$ コンデンサと呼ばれる.

HI1302

図7 安定性の説明図

(11) 図 5 でトランジスタを抜き取ったときの、ベース電位 V_B を求める式と数値を代入した値を求め よ.